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gas gun is probably somewhat less than required . 
for an explosive site, better shoek amplitude con­
trol is achieved through control of projectile 
velocity with gas pressure and volume, the gun 
is better adapted to laboratory operation, and 
:oafety problems arc perhaps somewhat less than 
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Fig. 4. Explosive methods to deliver shock to a specimen 
d iff er in cost, pressures tbey can a ttain, and ease of 
interpretation: (Top) Flying plate is most difficult, 
usually most costly, but attains highest pressures; con­
tact explosive reaches intermediate pressures at com­
parable or slightly lower cosL ; Oblique shot is least 
expensive of methods shown, achieves only low pres­
sures, requi.res large sample, and geometry complicates 
interpretation. 
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Fig. 5. Schematic arrangement for a shock experiment 
using a gas-driven projectile. 

with explosive handling. Early gun models were 
limited to low projectile velocities and shock 
pressures of a few tens of kilobars. The art of gun 
design has improved and pressures of several 
hundred kilobars can be obtained with single 
stage gas guns, while pressures of several mega­
bars have been produced by two-stage guns 
(Jones et ai., 1966). 

A gun experiment is shown schematically in 
Figure 5. The shock detector at the right may be 
a quartz or manganin gage or one of the systems 
commonly used in explosive experiments (Linde 
and Schmidt, 1966). 

PRODUCTION OF OBLIQUE SHOCK WAVES 

A fourth shock-generating method, the method 
of oblique detonation shown in Figure 4C, differs 
from the others in geometry, yielding a curvi­
planar shock instead of a one-dimensional one. 
The chief advantages of this method are : first, it 
offers lower pressures than any other explosive 
method (18 kbars in aluminum, for instance), 
making it useful in attempts to correlate shock 
work with static high-pressure studies; second, it 
offers a continuous record of both pressure and 
density from a single experiment, making it 
valuable for equation-of-state measurements; 
third, it is the least costly way to make shocks, 
because large, precise plane-wave generators are 
not required to initiate detonation. Disad­
vantages arise from the more complex geometry 
of the shock wave, which makes data interpreta­
tion more difficult than in other methods. 
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We now know what shock waves are, and how 
to generate them. Next, let's trace the energy 
delivered from explosive to specimen further 
along its path to dissolution. 

THE SHOCK EQUATIONS 

Back in Figure 4B, for example, when the 
plane shock wave in the driver plate reaches the 
interface between driver plate and specimen, 
part of the wave is transmitted into the specimen, 
and part is reflected back into the driver plate. 
In order to determine the amplitude (and ult i­
mately the energy) of the transmitted wave, we 
must use the equations which describe the effects 
of shock transition on both the mechanical and 
the thermodynamic states of the medium. 

These equations express the fact that mass, 
momentum, and energy are conserved in the 
shock transition: 

UI = (PI -PO) / poU (1) 

U2= V 02(PI-PO) / (Vo- VI) (2) 

uI=[1-(pO/ Pl)]U (3) 

EI-Eo=t(Vo- VI)(PI+PO) (4) 

In these equations, which apply precisely to a 
shock which connects two uniform states-indi­
cated by the subscript (0) for an initial unshocked 
state, and (1) for a subsequent shocked state-p 
is the component of compressive stress parallel 
to the direction of shock propagation. Density is 
denoted by p, and its reciprocal-the specific 
volume-by V. The velocity of propagation of 
the shock relative to the unstressed material just 
ahead of it is U. AB mentioned earlier, the shock 
compresses material to a higher density, and 
simultaneously increases its particle velocity by 
UI. The work done on a unit of mass by the force 
driving the shock thus shows up as an increase 
in the internal energy per unit mass of the shock, 
E, along with an increase in kinetic energy. 
Equation (4) represents this energy conserved 
with kinetic energy eliminated by means of 
Equations (1) and (3) . 

Equation (4), known as the R ankine-Hugoniot 
relation, plays a key role in shock theory. Its 
particular importance depends on the fact that 
it contains no velocity terms-only thermo­
dynamic quantities. 

When the Rankine-Hugoniot relation is com­
bined with the equation of state of any material, 
a unique relation between P and V is obtained. 
This relation is called the Rankine-Hugoniot 
(R-H) curve of the material (see Fig. 6). This 
curve expresses the locus of all states (PI, VI, E I, 
and so on) that can be reached from an initial 
state (Po, V o, Eo) by shock compression. In an 
analogous way, the ordinary adiabat or adiabatic 
curve may be defined as the locus of all states 
that can be reached from the initial state by 
adiabatic compression. 

At the point B, which represents initial un­
shocked conditions in the material (Po, V o, Eo), 
the R- H curve and the adiabat through point B 
have the same slope and curvature, but only at 
that point; at all higher pressures the R-H curve 
lies above the corresponding adiabat, because 
unlike adiabatic compression, shock compression 
dissipates energy, and is, therefore, irreversible. 

As shown in Figure 6, the increase in internal 
energy in a shock whose pressure amplitude is PI 
is represented by area ABCD. Loss of energy in 
a shock can be illustrated by comparing this area 
thermodynamically with that associated with a 
weaker shock, area ABC'D', for example. It can 
also be shown by simple calculation that just as 
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Fig. 6. The Rankine-H ugoniot curve defines states that can 
be induced in substance by shock compression in terms 
of pressure (p), specific volume (V), and internal 
energy (E). Shock compression [rom initial state B to 
shocked state 0 follows the straight line BO. Expan­
sion follows the adiabat OFG. The energy dissipated 
in shock is approximately equal to the gray area. 


